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1 | INTRODUCTION

In late 2020, messenger RNA (mRNA) covid‐19 vaccines gained

emergency authorisation on the back of clinical trials reporting

vaccine efficacy of around 95%,1,2 kicking off mass vaccination

campaigns around the world. Within 6 months, observational studies

reporting vaccine effectiveness in the “real world” at above 90%,

similar to trial results,3–6 became the trusted source of evidence

upholding these campaigns. While the contemporary conversation

about vaccine effectiveness has turned to waning protection, virus

variants, and boosters, there has (with rare exception7) been

surprisingly little discussion of the limitations of the methodologies

of these early observational studies.

The lack of critical discussion is notable, for even highly effective

vaccinations could only partially explain the drop in rates of covid‐19

cases, hospitalisations, and deaths by mid‐2021. For example, by March

2021, cases in the UK and United States had dropped roughly fourfold

from the January peak, when the “fully vaccinated” population only

reached 20% and 5%, respectively. At the same time, in Israel, cases took

longer to drop despite a substantially faster vaccine rollout (Figure 1). The

vaccination campaigns in these countries can thus only be part of the

story.

We are aware of only one article that addresses methodological

concerns in non‐randomised studies of covid‐19 vaccines.7 The author

draws attention to potential biases and measurement issues, such as

vaccination status misclassification, exposure differences, testing differ-

ences, attribution issues, and disease risk factor confounding. Many of

these concerns are hard to confirm within specific studies due to data

unavailability (e.g., testing differences) or cannot be fixed analytically

(e.g., exposure and other unmeasured quantities).

In this article, we focus on three major sources of bias for which

there is sufficient data to verify their existence, and show how they

could substantially affect vaccine effectiveness estimates using

observational study designs—particularly retrospective studies of

large population samples using administrative data wherein re-

searchers link vaccinations and cases to demographics and medical

history.

Using the information on how cases were counted in observational

studies, and published datasets on the dynamics and demographic

breakdown of vaccine administration and background infections, we

illustrate how three factors generate residual biases in observational

studies large enough to render a hypothetical inefficacious vaccine (i.e., of

0% efficacy) as 50%–70% effective. To be clear, our findings should not

be taken to imply that mRNA covid‐19 vaccines have zero efficacy.

Rather, we use the 0% case so as to avoid the need to make any arbitrary

judgements of true vaccine efficacy across various levels of granularity

(different subgroups, different time periods, etc.), which is unavoidable

when analysing any non‐zero level of efficacy. It is also important to note

that under hypothetical conditions different from the actual events of

early 2021, two of these sources of bias could bias results in the opposite

direction, that is, underestimating actual vaccine effectiveness. Finally, to

draw more precise conclusions about the impact of these biases on

specific published studies, we urge that all code and data available to

those studies be made public.

In each of our three illustrations, we compare results based on

observational study methods against randomised controlled trial
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(RCT) methods. For each comparison, one side represents a published

study while the other is a counterfactual. In each case, we show how

the gap between observational and RCT study results is due to a

source of bias.

2 | CASE‐COUNTING WINDOW BIAS

The pivotal covid‐19 vaccine trials used a primary endpoint of lab‐

confirmed, symptomatic covid‐19.8–11 Not all covid cases, however,

factored into the estimate of vaccine efficacy. Investigators did not

begin counting cases until participants were at least 14 days (7 days

for Pfizer) past completion of the dosing regimen, a timepoint public

health officials subsequently termed “fully vaccinated.”12 The

rationale for excluding cases occurring before the start of this

“case‐counting window” was not provided in trial protocols–and

legitimacy of excluding post‐randomisation events has long been

debated13—however, one Pfizer post‐marketing document states

that in the early period post‐vaccination, “the vaccine has not had

sufficient time to stimulate the immune system.”14

In randomised trials, applying the “fully vaccinated” case counting

window to both vaccine and placebo arms is easy. But in cohort

F IGURE 1 Daily covid‐19 cases and vaccination rates—United States, UK, and Israel, 2021. Israel: At 20% “fully vaccinated,” daily case rate
remained high (timepoint A). At 50%, daily case rate dropped to a seasonal low (timepoint B). UK and United States: Daily case rates dropped
drastically with few “fully vaccinated” (timepoint A). At 20% and 5% “fully vaccinated,” daily case rates approached seasonal lows (timepoint B).
Data source: OurWorldInData.
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studies, the case‐counting window is only applied to the vaccinated

group. Because unvaccinated people do not take placebo shots,

counting 14 days after the second shot is simply inoperable. This

asymmetry, in which the case‐counting window nullifies cases in the

vaccinated group but not in the unvaccinated group, biases estimates.

As a result, a completely ineffective vaccine can appear substantially

effective—48% effective in the example shown in Table 1. (The

placebo data in Table 1 comes from the Pfizer Phase III randomised

trial, and is the assumed case counts for the unvaccinated group in a

counterfactual observational study occurring simultaneously; this

setup illustrates the potential size of a case‐counting window bias in a

real‐world setting as well as why this bias does not exist in a

randomised trial.).

We are aware of just one observational study3 that addressed

case‐counting window bias, by using matching and designating a

pseudo‐study enrolment date for the unvaccinated party in each

matched pair of vaccinated and unvaccinated persons. While

matching mitigates case‐counting window bias, this method injects

an artificial and severe age bias between unvaccinated and

vaccinated groups: the matched subset underrepresented patients ≥

70 years by 50% while over‐representing patients ≤ 40 years by 50%.

(This occurred because the propensity to receive the vaccine is highly

influenced by age. Therefore, the number of one‐to‐one matched

pairs of elderly patients is upper bounded by the number of

unvaccinated elderly while the number of one‐to‐one matched pairs

of younger patients is upper bounded by the number of vaccinated

young.).

In retrospective studies using large population samples, we propose

a simple adjustment that can correct for case‐counting window bias.

The case rate from vaccination to the start of the case‐counting window

can be observed from the vaccinated group and applied to the

unvaccinated group to estimate the number of cases to be excluded

before computing the relative ratio of cases. This adjustment preserves

the case‐counting window, while assuming the vaccine is completely

ineffective before its start. Because we use the 0% efficacy assumption,

this simple adjustment returns the vaccine effectiveness estimate back

to zero. A similar strategy has proved useful in influenza treatment

analyses.16

3 | AGE BIAS

Age is perhaps the most influential risk factor in medicine, affecting

nearly every health outcome. Thus, great care must be taken in

studies comparing vaccinated and unvaccinated to ensure that the

groups are balanced by age. Failure to do so may lead to inaccurate

estimates of vaccine effectiveness when the difference in outcomes

can be explained, at least partially, by age bias.

In trials, randomisation helps ensure statistically identical age

distributions in vaccinated and unvaccinated groups, so that the

average vaccine efficacy estimate is unbiased, even if vaccine efficacy

and/or infection rates differ across age groups (see Figure 2A).

However, unlike trials, in real life, vaccination status is not

randomly assigned (see Figure 2B). While vaccination rates are high in

many countries, the vaccinated remain, on average, older and less

healthy than the unvaccinated because vaccines were prioritised for

those older and at higher risk. Individuals also self‐select for

vaccination regardless of policy.

Because covid‐19 related risks (of infection, disease, and

complications) also vary by age, this can confound the estimate of

TABLE 1 How the asymmetric application of case counting windows can bias observational studies.

Vaccinea/vaccinated Placebo/unvaccinated

Symptomatic cases (Days 0–84)b 257 257

Symptomatic cases during case‐counting
window (Days 36‐84)b

134 134

Participants at riskb 21,314 21,258

Randomised trial calculations

Case rate with case‐counting window on
both arms

0.63% = 134/21314 0.63% = 134/21258

Vaccine efficacy 0% = 1 − (0.63%/0.63%)

Observational study calculations

Case rate applying case‐counting window on
vaccinated only

0.63% = 134/21314 1.21% = 257/21258

Vaccine effectiveness 48% = 1 − (0.63%/1.21%)

aHypothetical vaccine is assumed to have zero efficacy.
bThe placebo case count includes cases reported up to Day 84 in Pfizer's pivotal vaccine trial. This number, and the (unequal) number of participants at
risk, are taken from the actual reported trial results (see Pfizer's cumulative incidence graph, p. 30).15 The vaccine case rate is fictitious and matches the
placebo rate to carry out calculations on a hypothetical vaccine with zero efficacy. We follow the standard convention of the 14‐day case counting
window, which translates to Day 36 (14 days following Dose 2, which is given 21 days after Dose 1).
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vaccine effectiveness. To illustrate this, consider the REACT‐1

study.18 This study conducts PCR testing for severe acute respiratory

syndrome coronavirus 2 (SARS‐CoV‐2) on a random sample of

England's population once a month. In June–July 2021 (the most

recent data available), SARS‐CoV‐2 positivity rates varied considera-

bly by age (from 1.7 to 15.6 positives per 1000 individuals), with

higher rates among people under 25 years of age (see Figure 2C).

REACT‐1 also reports vaccination status. As seen in Figure 2B,

almost half of the unvaccinated group is aged between 5 and 12, while

the most common age group in the vaccinated was 45–54 years old.

While details differ, age bias is present in all observational data sets.

To understand the impact of age bias, consider a hypothetical

vaccine with zero efficacy. The vaccinated and unvaccinated groups’

case rates should be statistically identical if the vaccine were

completely ineffective (Figure 2D). But age bias in observational

data alters the age‐weighted case rates in both the vaccinated and

the unvaccinated groups, resulting in different infection rates by

vaccination status. Since older people recorded lower infection rates,

the age‐weighted case rate of the (older) vaccinated group registered

at 5.5 per 1000 while the corresponding value for the (younger)

unvaccinated group was 11.2 per 1000 (Figure 2C). The resultant

vaccine effectiveness, which is the relative ratio of these case rates,

reflects the interaction between differential age distributions and the

correlation of covid‐19 incidence with age. The vaccine effectiveness

appears as 51% even though the vaccine is completely ineffective by

assumption. (Note that the direction of the age bias would reverse if

older age groups had suffered higher case rates during the study

period.).

A viable adjustment method for this instance of Simpson's paradox19

induced by age bias should shift 51% back to zero. Simpson's paradox

describes the condition in which aggregated and disaggregated analyses

of the same data lead to contradictory findings, a common phenomenon

in real‐world data. Many observational studies incorporate an age term

into regression models in an attempt to correct this age bias.4,20,21 But it

has been discovered in a meta‐analysis of influenza vaccine studies that

standard regression adjustments insufficiently correct for the variety and

magnitude of biases.22

4 | BACKGROUND INFECTION RATE BIAS

From December 2020, the speedy dissemination of vaccines,

particularly in wealthier nations (Figure 1), coincided with a period

of plunging infection rates. However, accurately determining the

F IGURE 2 Age bias. The higher propensity of older people to be vaccinated causes “real‐world” vaccine effectiveness to deviate from
vaccine efficacy in a randomised clinical trial. Notes: The age distribution under the hypothetical randomised clinical trial is taken from England's
population pyramid, as if the study population is representative.17 The age distribution for the observational study is as reported in Round 13 of
the REACT‐1 Study (mid‐June to mid‐July 2021). Infection rates by age group are taken from the REACT‐1 Study, which was 0.68% during
Round 13 when averaged across all age groups. RCT, randomised clinical trial; VE, vaccine efficacy/effectiveness.
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contribution of vaccines to this decline is far from straightforward.

Indeed, the considerable variation in case decline by country, such as

the time lag observed in Israel—by far the quickest to reach 50%

vaccinated relative to the UK and the United States—defies simple

explanation (Figure 1, timepoint “B”). The sharp drop in infections

complicates estimating vaccine effectiveness from observational data

in a manner similar to age bias. The risk of virus exposure was

considerably higher in January than in April. Thus exposure time was

not balanced between unvaccinated and vaccinated individuals.

Exposure time for the unvaccinated group was heavily weighted

towards the early months of 2021 while the inverse pattern was

observed in the vaccinated group. This imbalance is inescapable in

the real world due to the timing of vaccination rollout.

In addition, unlike trials, individuals in “real‐world” studies do

not stay in a single analysis subgroup throughout the study period:

each person is unvaccinated on the first day of the study until the

day of vaccination (or the end of the study should the person

remain unvaccinated). Instead of crudely categorising individuals

as either “vaccinated” or “unvaccinated,” many observational

studies split each person's exposure time into an unvaccinated

period followed by a vaccinated period if the individual got

vaccinated.4–6 This technique is essential in contexts where the

vast majority of the population becomes vaccinated, to avoid

losing a comparison population. However, this procedure injects a

strong bias into the analysis subgroups because the unvaccinated

exposure time is heavily skewed to the early period in a study

while the exposure time for vaccinated people skews towards the

end of the study period.

For a hypothetical vaccine with zero efficacy, the case rates for

vaccinated and unvaccinated should be equal during each week of

the study period. Indeed in RCTs, changes in background infection

rate do not bias estimates of vaccine efficacy because by design,

vaccine and placebo arms follow a synchronised dosing schedule that

ensures exposure (at‐risk) time is balanced, even in the context of

changing infection rates.

But background infection rate bias can cause estimates of

vaccine efficacy in “real world” studies to vary widely from 0%. For

example, using infection rate data from an actual observational study

of Danish nursing home residents,20 where infection rates rapidly

declined simultaneous with vaccine rollout (from 12 per 1000

residents in December 2020, to almost 0 during the last 2 weeks

of the study),20 vaccine effectiveness of a hypothetically ineffective

vaccine appears as 67%, an illusion chiefly created because

unvaccinated people were preferentially exposed to the earlier

weeks of higher background infection rates (Figure 3). We note that

the direction of this bias would reverse if the background infection

rate were to have steadily risen during the study period (i.e.,

vaccinating into a wave rather than out of one).

The Danish study was one of the first “real‐world” studies to

recognise this background infection rate bias. The researchers added

a “calendar time” adjustment term to their Cox regression model to

address this bias, which reduced their estimate of vaccine effective-

ness from 96% to 64%.20 However, as with age bias, we believe that

regression adjustment is unlikely to sufficiently cure this type of

imbalance. Because the regression equation was not published, we

could not make a more definitive assessment.

F IGURE 3 Vaccinating while case rates fall—RCTs versus observational studies. Left panel: Relative sizes of vaccine and placebo arms in a
randomised clinical trial. Right panel: Relative sizes of vaccinated and unvaccinated groups in a real‐world study. Notes: Weekly infection rates
are derived from weekly number of tests and proportion positive and total resident population extracted from figure 1A and table 1 of
Moustsen‐Helms et al.20 Proportion vaccinated at start and end of study also came from Moustsen‐Helms; vaccinations and trial enrolment are
assumed to grow linearly over study period.
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5 | LESSONS LEARNED

A recent commentary discussed multiple factors that can bias estimates

of covid‐19 vaccine effectiveness, such as vaccination status mis-

classification, testing differences, and disease risk factor confounding.7

Our article complements these observations by providing examples based

on actual data sets that quantify how case‐counting window bias, age

bias, and background infection rate bias can profoundly complicate the

analysis of observational studies, shifting covid‐19 vaccine effectiveness

estimates by an absolute magnitude as high as 50% to 70%. Randomised

trials aim to mitigate these biases by virtue of design features, such as

randomisation, placebo controls, and blinding. But while randomised trials

should offer far superior protection against these biases, premarketing

trials left many important questions unstudied, such as the durability of

protection, interaction with other countermeasures, and effectiveness in

highest‐risk and other important subpopulations. Pragmatic, placebo‐

controlled randomised trials might have addressed some of these

limitations, but after manufacturers began unblinding their trials following

the emergency use authorisation in December 2020, observational

studies are all we have.

Our analysis shows that real‐world conditions such as non‐

randomised vaccination, crossovers, and trends in background infection

rates introduce strong, complex biases into these observational datasets.

Our contribution is to size up three important biases, the magnitude of

which surprised us and may surprise you. We conclude that “real‐world”

studies using methodologies popular in early 2021 overstate vaccine

effectiveness. Our finding highlights how difficult it is to conduct high‐

quality observational studies during a pandemic.

While the current situation leaves much to be desired, several

steps can be taken going forward to enhance the quality of

observational studies. Greater awareness of these biases could

promote more appropriate adjustments in future studies, including

using quasi‐experimental methods. In addition, journal editors could

improve transparency and reproducibility of observational studies by

requiring the disclosure of underlying data and code, as well as

publishing modelling equations, tables of coefficients, and standard

errors.23 Data availability severely restricted our choice of studies to

examine, and also prevented us from analysing all three biases

simultaneously, among the ones we selected.

As shown in Table 2, we would have needed additional information,

such as (a) cases from first dose by vaccination status; (b) age distribution

by vaccination status; (c) case rates by vaccination status by age group; (d)

match rates between vaccinated and unvaccinated groups on key

matching variables; (e) background infection rate by week of study; and

(f) case rate by week of study by vaccination status.

In future work, we hope to analyse examples using hospitalisa-

tions or deaths as endpoints, which is possible only with broader data

disclosure.

The pandemic offers a magnificent opportunity to recalibrate our

expectations about both observational and randomised studies. “Real

world” studies today are still published as one‐off, point‐in‐time

analyses. But much more value would come from having results

posted to a website with live updates, as epidemiological and

vaccination data accrue. Continuous reporting would allow research-

ers to demonstrate that their analytical methods not only

explain what happened during the study period but also generalise

beyond it.

Finally, randomised studies should not be considered irrelevant in

the post‐authorisation phase. An element of randomisation can be

incorporated into real world vaccine distribution. Where populations

are still largely unvaccinated and resources do not allow vaccinating

everybody at once, designs such as the stepped‐wedge cluster

randomised rollout24,25 should be given serious consideration for

their ability to ethically derive important scientific information. Any

tool that eliminates some amount of real‐world bias would reduce the

complexity of analysing observational data.
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TABLE 2 Three biases and the data required to assess them in real‐world studies.

Bias source Unvaccinated group Vaccinated group Data required to adjust for bias

Case‐counting
window

Not applied (inoperable) Applied Epi curve showing cases from first dose by vaccination
status

Age Younger (and by correlation,
healthier)

Older (and by correlation,
less healthy)

Age distribution by vaccination status; cases by vaccination
status by age group; results from matching methods (if
available)

Background

infection rate

Exposure time earlier in

calendar year 2021

Exposure time later in

calendar year 2021

Infection rate by week of study; case rate by week of study

by vaccination status
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